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Asymptotic solitons of the extended Kortewegde Vries equation
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The interaction of two higher-order solitary waves, governed by the extended Korteweg—ddRdiés
equation, is examined. A nonlocal transformation is used on the extended KdV equation to asymptotically
transform it to the KdV equation. The transformation is used to derive the higher-order two-soliton collision
and it is found that the interaction is asymptotically elastic. Moreover, the higher-order corrections to the phase
shifts suffered by the solitary waves during the collision are found. Comparison is made with a previous result,
which indicated that, except for a special case, the interaction of higher-order KdV solitary waves is inelastic,
with a coupling, or interaction, term occuring after collision. It is shown that the two theories are asymptoti-
cally equivalent, with the coupling term representing the higher-order phase shift corrections. Finally, it is
concluded, with the support of existing numerical evidence, that the interpretation of the coupling term as a
higher-order phase shift is physically appropriate; hence, the interaction of higher-order solitary waves is
asymptotically elastid.S1063-651X99)03803-5

PACS numbg(s): 41.20.Jb, 05.45.Yv, 02.30.Jr

I. INTRODUCTION solution of the extended KdV equatiail) with arbitrary
coefficients. The higher-order two-soliton solution contained
The Korteweg—de Vrie$KdV) equation arises as an ap- interaction terms, which were interpreted as evidence of an
proximate equation governing weakly nonlinear long wavesnelastic collision. One special case was identified, wogn
when terms up to first-order in thesmal) wave amplitude =10c,, for which the collision was elastic.
are retained and the weakly nonlinear and weakly dispersive Marchant and Smyth5] also transformed the extended
terms are in balancésee, Whitham ir{2]). If higher-order  KdV equation, Eq/(1) with arbitrary coefficients, to the as-
effects are of interest then, by retaining terms up to secondsociated higher-order integrable KdV equation. In contrast to
order in the(smal) wave amplitude, the extended KdV equa- Kraenkel[1] and Kodama4], a local asymptotic transforma-
tion tion was used. The higher-order two-soliton solution for Eq.
(1) was considered well after interaction and found to consist
M+ 607t Pxxt ACL7 M ACo M Tt AC3 N Ty of two higher-order solitary waves of E@l), which were
unchanged in shape. Moreover, no dispersive radiation was
present; hence, it was concluded that the collision was elastic

results, wherex is a nondimensional measure of trenall to at least O&). The O(x) corrections to the phase shifts of

wave amplitude and the coefficiertsdepend on the physi- the higher-orc_ier solita_ry waves after collision were also
cal context. This equation describes the evolution of steepdPUnd- Numerical solutions were presented for an example
waves of shorter wavelength than does the KdV equation. [¥/here the wave amplitude was small. This showed evi-

the special case of surface waves on shallow water, Marchafnce of inelastic behavior beyond &( an oscillatory
and Smyth 3] found the coefficients to be wave train of extremely small amplitude was found behind

the smaller higher-order solitary wave after the collision. In
2 addition, a good comparison was found between the higher-
order phase shifts of the solitary waves and the numerically

Kodama[4] obtained an approximate Hamiltonian for the obtained values.
extended KdV equatiofil). The Hamiltonian is exact for the ~ The aim of this paper is to resolve the differing conclu-
integrable version of the extended KdV equation, with coef-sions of Kraenke[1] and Marchant and Smyf{l3] regarding
ficients the nature of the interaction of two higher-order solitary
waves. This is done by showing that Krankel's coupling term
ci=1, c,=3%, C3=3, Cs=35 (3 corresponds to the higher-order phase shift corrections and
do not affect the usual scattering properties of the solitons. In
and accurate to @) in the general case. The Hamiltonian Sec. Il the asymptotic transformation for the extended KdV
system was transformed, to &), to the integrable case, equation(1) to the KdV equation is presented. This is similar
which implies that the extended KdV equation with arbitraryto the asymptotic transformation used by Kraerjkéiin that
coefficients is approximately integrable. The asymptoticit contains a nonlocal term. A single higher-order solitary
transformation used included a nonlocal term. wave is derived from the KdV one-soliton solution using the
Kraenkel[1] applied the nonlocal asymptotic transforma- transformation. In Sec. Il the KdV two-soliton solution is
tion, as used by Kodampt], to transform the two-soliton used to derive the higher-order two-soliton solution for the
solution of the associated higher-order integrable KdV equaextended KdV equatiofil) with arbitrary coefficients. In ad-
tion [(1) with coefficients(3)] to the higher-order two-soliton dition the higher-order phase shifts are found. In Sec. IV the

T aCyPyux= 0, a<l1 (1)
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results of Kraenke]1] are compared with the current theory; whereA* is the amplitudek* andA* are related by R*?
it is shown that the coupling term corresponds to the higher=A*, the velocityV* =2A*, ands gives the position of the
order phase shifts corrections and, hence, both theories aseliton att=0. Using the KdV soliton(6) in the transforma-
asymptotically equivalent. In Sec. V, it is concluded that thetion (4) gives
interpretation of the coupling term as a higher-order phase

shift is physically appropriate and that the interaction of

higher-order solitary waves is asymptotically elastic. This is n=A* secBo+ aA*?
supported by the numerical evidence of Marchant and Smyth

[5].

C; C3 C; Cy

3c, €1 Co

>+t seclo+ - - -, (7)

—I—aA*Z(

II. THE ASYMPTOTIC TRANSFORMATION

. . . where
The asymptotic transformation used in Marchant and

Smyth[5] is extended, by including a nonlocal term, to allow
the extended KdV equation to be transformed to the KdV 9= k*[(l—a%A*
equation. This transformation has been recently derived by 3
Fokas and Liy6] by using the symmetry of the associated
higher-order integrable KdV equation. The KdV two-soliton
solution is used to directly generate the higher-order two
soliton solution, to O&), of the extended KdV equation
with arbitrary coefficients. If we substitute the transforma-

X+ a2k* c5(tanhp+ 1) —s—V*t

Due to the nonlocal term in the transformati@t), the phase

0 is defined implicitly. The phasé is made explicit by ex-
panding it in a Taylor series. Expanding the phase and scal-
ing the amplitude by using

tion A=A*[1—a(4c,/3) A*] (8)
_ C3 C1 2C4 , C2 G C gives the higher-order solitary wav@) as
e N R T 12)“”’ @
n=AsecR+ aA%cqsecR o+ aA’c, secho+ - - -,
(o] X
T=t+a§4X, §=x+a05fin(p,t)dp, a<l, where
. 2 1
where c5=(8c,—c3)/3 and u(x,t)—0, x—*= into the ¢s= “Cs_ EJF 2_5(34), c7=<ﬁ— EJF G_C ,
extended KdV equatiofil), thenu(&,7) is a solution of the 3 6 6 2 2 12 4
KdV equation ©)
U 6UL+ Uge =0, 5) 0=k{x—s[1+ a (2¢,/3) A]+2acsk— V1,

= 2 DY
where terms of O¢?) are neglected. This transformation is V=2AF4aC, AT -,

appropriate for solutions that approach zero far upstream and ) . .
downstream, such as the solitary wave solutions consideredd &“=A. Marchant and Smytfi3] derived the higher-
here. For other forms of solution, such as periodic solutionsorder cnoidal wave solution for Eql). Taking the solitary
the nonlocal term in the transformatiof) needs to be modi- Wave limit of this solution[their (2.25] gives Eq.(9). It
fied slightly. should be note.d that the t-ransformatlon has shifted the
There are four perturbative terms at&)(in Eq. (4), pre- higher-order solitary wave slightly, frori=s at 7=0 to X
cisely the number of higher-order terms in the extended Kdv=S(1+ a(2¢4/3)A) + a2csk att=0. Hence, it can be seen
equation(1). Alternatively, the extended KdV equatiqa)  that th_e trangformat|o(14) gives the appropriate expression
can be transformed to a higher-order member of the Kd\for a single higher-order solitary wave of the extended KdV
integrable hierarchy; then only three of the perturbativeeduation().
terms in the transformatiofd) are required, as the wave
amplitudea can also be rescaled. Marchant and Smjh lil. THE HIGHER-ORDER TWOQ-SOLITON SOLUTION
used the form of Eq(4) without the nonlocal term while  The transformatior4) shall be applied to the two-soliton
Kraenkel[1] omitted the term perturbing the tinte solution of the KdV equatiof5) to obtain the corresponding
The soliton solution of the KdV equation is higher-order two-soliton solution, to @], for the extended
KdV equation(1) with arbitrary coefficients. The two-soliton
u=A* sechd where 6=k*(&—s—V* 1), (6) solution of the KdV equatior5) is

1 K3 2f1+ K3 2f o+ 2(k3 —k§)2ff o+ m(k3 2F2f 5+ K} *f4f5) 10
8 (1+F,+fy+mfyfy)? ’
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where fi=expX* (Vi r—£&+s), i=1,2, Vi =2AF, andm s;=a2csky, Sp=a2cs(ky+2ky), T——0, (14)
=[ (k3 —Kk})/(K5+KT)]? (see, Hirota in[7]). The velocity
of the ith soliton isV}* and its position iss;+ V" 7. Well s;=a2cs(ky+2ky), s;=a2cgky,, 7.
before interactiorfas r— —,) the two-soliton solutiori10)
is As the nonlocal term in the transformation of the phése
an integral from far behind the solitary wave to the current
u=A} seclt6,+ A} secho,, (1)) position, an extra term, due to the integration over the trail-
ing solitary wave, can appear in the phase of the leading
where solitary wave. Hence, it can be seen from Ety) that the
O;=K[E—s—Vi7], VI=2AF, i=1.2. extra term appears in the phase of the smaller wave before

collision and the larger wave after collision.

. o . . e There are two contributions to the change in the phase
Expression(11) is just the sum of two solitons; it satisfies the shifts at higher-order, the scaling in amplitut® and the

KdV equation (5) because the solitons are a long diStanceextra term that represents the integration over the trailin
apart(hence the interaction terms, suchfas,, in Eq. (10) b 9 9

are all negligible. Also we choosa\ >A% ands,<s,; this solitary wave. These phase shifts can be written in the form

means that the larger soliton is behind the smaller one ini- 1 /i 4k, 1 [(ky+k,
tially. As the first soliton is larger, it travels faster; hence, it + k—ln(k _r )—4aAk2, - k—ln K )+4aAkl,
will interact with the second soliton as it overtakes it. To see 1 Lo 2 1o (15
the result of the collision, the solution is considered well
after interaction(as 7—). After interaction, the solution is \yhere
again Eq.(11), but with the phase shifts
A=3(10c,—c3)
1 kY +k3 1 kY +k3
+ k_*ln( " —k*)’ - k_*ln( " —k*)’ (12)  for the larger and smaller higher-order solitary waves, re-
1 1 2 2 1 2

spectively. Note that in the special casg=10c,, the phase
for the larger and smaller solitons, respectively. Hence, théhlfts are unchanged from the KdV case. These are the same

soliton collision is elastic. The only memory of the collision Phase shifts as derived by Marchant and Snigiby using

; ; ; different transformation.
is a phase shift forwards for the larger soliton and a phas@ _ .
shift backwards for the smaller soliton. Sachs[8] used a perturbation method based on inverse

The higher-order two-soliton solution, to @), describ- scattering to examine higher-order solitary wave water inter-
ing the interaction of two higher-order solitary waves goV_actlons. He found that the interactions were elastic ta)Q(

erned by the extended KdV equatiéh) with arbitrary coef- which is in agreement with the results found above. Zou and
ficients, is just the KdV two-soliton solution(10) Su[9] considered higher-order interactions of solitary waves

transformed by using Ed4). Due to the complicated form on shallow water by.using a perturbatipn expansion of the
of Eq. (10), the explicit higher-order two-soliton solution Euler equations. At first-order the solution was assumed to
will not be calculated: the nature of the collision can beP€ the KdV two-solition solution. Continuing the perturba-

found by considering the solution well before and after in_tion procedure results in partial differential equations de-

teraction. Expressiofil1) describes the KdV two-soliton so- scribing t_he solitary wave collision at second- and third-
lution (10) before and after interaction; substituting Efj1) qrder, which were theln solved numgnpally. At second-order
into the transformatiori4) gives [i.e., at O@)], the solitary wave collision was found to be

elastic.
n=A; secR;+A, secko,+ aAZcq seck 6, In the special case of surface waves on shallow water,
governed by Eq(1) with coefficients(2), the phase shifts
+ aAsce seck 6, + aAlc, sech 6, (15) are
+aAsc, sech o+ - - -, (13 1 (kyt+kp 1 [kitky
+k— n kK —2aks, —k—ln K —K. +2aky
0= ki{x—si[1+a (2c4/3) A]]—s/ —Vit}, roam e 2 T (16)
Vi=2Ai+a4c4Ai2+ e, 1=1,2, for the larger and smaller waves, respectively, which is the
) same as, after appropriate scalings of space, time, and the
where the cross termsuch as seciy; seclid,) are negli-  amplitudea, those obtained by Zou and $8] directly from

gible due to the large distance between the solitons. Expreshe Euler water wave equations.
sion (13) is just two single higher-order solitary waves as
required. As for KdV solitons, the higher-order solitary
waves are unchanged in shape after the collision. Moreover,
no dispersive radiation is generated; hence, the collision is Kraenkel[1] applied the asymptotic transformation to the
elastic. two-soliton solution of the associated higher-order integrable
The transformation modifies the phase shift8), which ~ KdV equation and found higher-order coupling, or interac-
occur after interaction, of the KdV solitons. Before and aftertion, terms which were interpreted as evidence of an inelastic
interaction, the phase constasfsof each solitary wave are collision. A special case was found where the collisions were

IV. COMPARISON WITH KRAENKEL'S RESULTS
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elastic, whenc;=10c,. This special case corresponds towhere terms of O¢%) are ignored. The higher-order term in
when the higher-order corrections in the phase stilfisare  Eq. (19), which is the Taylor series expansion of the phase
zero. Here it is shown that the coupling, or interaction, termsshift in Eq. (18), has the same functional form as the inter-
of Kraenkel correspond to those higher-order phase shifts. action terms of Kraenkel. Hence, it seems reasonable to in-

Firstly, the two-soliton interaction terms of Kraenkeke terpret the interaction termd7) from the two-soliton inter-
Eqgs.(14) and(15)] are reproduced. Also Kraenkel’s notation action as phase shifts also. Using this interpretation for the
is used throughout. The interaction terms are corrected interaction termd7) gives the phase shifts as

Tk Tk - _ — = _ —
—%|<‘1‘secr%71tanr(T1 2 (kKd= 2K k) s1=—29kp— Yk, S=— Ky, t——»,  (20)
Mk, T A1z Mk, T A1z S1= =K1, =29k~ vk, toe,

x secht > tan > ,

well before and after collision. Using Eq20) gives the

t—oo, 17 higher-order correction to the phase shifts of the large and
small solitary waves as-2yk, and 2ykq, respectively. In
Y . M, T A1z 7k, T A1z terms of the notation used in Sec. lll, these corrections are
7 (Ki—2kaky) sech > tan 2
—35(10cs—cg)ky, 5(10cs—Cg)ky, (21
Y. 4 7k, Mk,
_EkZSeCH > tan > | t— —oo,

which matches the higher-order phase shifts derived in Eq.
d (15). Hence, it has been shown that the interaction terms of

k, andk, identify the two solitary waves and are related to <"@€nkel [1] are asymptotically equivalent to the higher-

the respective solitary wave amplitudes. Also, the constan(l)rder corrections to the KdV phase shifts, as found in Sec.

A, is related to the phase shifts of the associated higher]-”'
order integrable KdV equation. Firstly, if the second solitary

where the arbitrary phase constérihas been set to zero an

wave has zero amplitudé4=0), then the interaction terms V. CONCLUSION
(17) should reduce to the one-soliton perturbative tésee _ _
(12) in Kraenke) for all values of timet. This is not the case It has been shown that an asymptotic transformation,

in (17) as the remaining perturbative terfwith coefficient ~ Which includes a nonlocal term, can be used to derive the
yk4/12) changes sign as time goes frdm» —o to t—o.  higher-order two-soliton solution directly from the KdV two-
Hence, the correct version of E6L7) has negative coeffi- Soliton solution. The higher-order solitary waves are elastic

cients throughout so that it is consistent with the one-solitof® O(a) for all values of the coefficients;. Moreover,
solution. higher-order corrections to the phase shifts are found. This is

Consider the KdV soliton in agreement with the theoretical results of other authors,
such as Sachs], Zou and Sy9], and Marchant and Smyth
[5], who also conclude that the interaction is elastic t@D(
The current theory, and that of KraenKdl], have been
resolved with Kraenkel’'s coupling, or interaction, term and
where s is a higher-order phase shift. As the higher-orderthe higher-order phase shifts5) shown to be asymptotically
phase shift is of Of), a Taylor's series expansion gives  equivalent via a Taylor series expansion. Marchant and
Smyth[5] verified the higher-order phase shiftis) numeri-

1 k
W=—§k2 secﬁz(x+ €s), (18

1 k K3 k k i i i
__ T2 ® h x cally in the special case of surface water waves, which pro-
W 2k SeCHZ(XHES 2 secﬁz(x)tanhz—(x), vides additional evidence that the interpretation of the cou-
(29 pling term as a phase shift is physically appropriate.
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