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Asymptotic solitons of the extended Korteweg–de Vries equation
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School of Mathematics and Applied Statistics, University of Wollongong, Wollongong 2522, New South Wales, Australia

~Received 12 August 1998!

The interaction of two higher-order solitary waves, governed by the extended Korteweg–de Vries~KdV!
equation, is examined. A nonlocal transformation is used on the extended KdV equation to asymptotically
transform it to the KdV equation. The transformation is used to derive the higher-order two-soliton collision
and it is found that the interaction is asymptotically elastic. Moreover, the higher-order corrections to the phase
shifts suffered by the solitary waves during the collision are found. Comparison is made with a previous result,
which indicated that, except for a special case, the interaction of higher-order KdV solitary waves is inelastic,
with a coupling, or interaction, term occuring after collision. It is shown that the two theories are asymptoti-
cally equivalent, with the coupling term representing the higher-order phase shift corrections. Finally, it is
concluded, with the support of existing numerical evidence, that the interpretation of the coupling term as a
higher-order phase shift is physically appropriate; hence, the interaction of higher-order solitary waves is
asymptotically elastic.@S1063-651X~99!03803-5#

PACS number~s!: 41.20.Jb, 05.45.Yv, 02.30.Jr
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I. INTRODUCTION

The Korteweg–de Vries~KdV! equation arises as an ap
proximate equation governing weakly nonlinear long wav
when terms up to first-order in the~small! wave amplitude
are retained and the weakly nonlinear and weakly disper
terms are in balance~see, Whitham in@2#!. If higher-order
effects are of interest then, by retaining terms up to seco
order in the~small! wave amplitude, the extended KdV equ
tion

h t16hhx1hxxx1ac1h2hx1ac2hxhxx1ac3hhxxx

1ac4hxxxxx50, a!1 ~1!

results, wherea is a nondimensional measure of the~small!
wave amplitude and the coefficientsci depend on the physi
cal context. This equation describes the evolution of stee
waves of shorter wavelength than does the KdV equation
the special case of surface waves on shallow water, Marc
and Smyth@3# found the coefficients to be

c1521, c25 23
6 , c35 5

3 , c45 19
60 . ~2!

Kodama@4# obtained an approximate Hamiltonian for th
extended KdV equation~1!. The Hamiltonian is exact for the
integrable version of the extended KdV equation, with co
ficients

c151, c25 2
3 , c35 1

3 , c45 1
30 , ~3!

and accurate to O(a) in the general case. The Hamiltonia
system was transformed, to O(a), to the integrable case
which implies that the extended KdV equation with arbitra
coefficients is approximately integrable. The asympto
transformation used included a nonlocal term.

Kraenkel@1# applied the nonlocal asymptotic transform
tion, as used by Kodama@4#, to transform the two-soliton
solution of the associated higher-order integrable KdV eq
tion @~1! with coefficients~3!# to the higher-order two-soliton
PRE 591063-651X/99/59~3!/3745~4!/$15.00
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solution of the extended KdV equation~1! with arbitrary
coefficients. The higher-order two-soliton solution contain
interaction terms, which were interpreted as evidence of
inelastic collision. One special case was identified, whenc3
510c4 , for which the collision was elastic.

Marchant and Smyth@5# also transformed the extende
KdV equation, Eq.~1! with arbitrary coefficients, to the as
sociated higher-order integrable KdV equation. In contras
Kraenkel@1# and Kodama@4#, a local asymptotic transforma
tion was used. The higher-order two-soliton solution for E
~1! was considered well after interaction and found to con
of two higher-order solitary waves of Eq.~1!, which were
unchanged in shape. Moreover, no dispersive radiation
present; hence, it was concluded that the collision was ela
to at least O(a). The O(a) corrections to the phase shifts o
the higher-order solitary waves after collision were a
found. Numerical solutions were presented for an exam
where the wave amplitudea was small. This showed evi
dence of inelastic behavior beyond O(a); an oscillatory
wave train of extremely small amplitude was found behi
the smaller higher-order solitary wave after the collision.
addition, a good comparison was found between the high
order phase shifts of the solitary waves and the numeric
obtained values.

The aim of this paper is to resolve the differing concl
sions of Kraenkel@1# and Marchant and Smyth@5# regarding
the nature of the interaction of two higher-order solita
waves. This is done by showing that Krankel’s coupling te
corresponds to the higher-order phase shift corrections
do not affect the usual scattering properties of the solitons
Sec. II the asymptotic transformation for the extended K
equation~1! to the KdV equation is presented. This is simil
to the asymptotic transformation used by Kraenkel@1# in that
it contains a nonlocal term. A single higher-order solita
wave is derived from the KdV one-soliton solution using t
transformation. In Sec. III the KdV two-soliton solution
used to derive the higher-order two-soliton solution for t
extended KdV equation~1! with arbitrary coefficients. In ad-
dition the higher-order phase shifts are found. In Sec. IV
3745 ©1999 The American Physical Society
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results of Kraenkel@1# are compared with the current theor
it is shown that the coupling term corresponds to the high
order phase shifts corrections and, hence, both theories
asymptotically equivalent. In Sec. V, it is concluded that t
interpretation of the coupling term as a higher-order ph
shift is physically appropriate and that the interaction
higher-order solitary waves is asymptotically elastic. This
supported by the numerical evidence of Marchant and Sm
@5#.

II. THE ASYMPTOTIC TRANSFORMATION

The asymptotic transformation used in Marchant a
Smyth@5# is extended, by including a nonlocal term, to allo
the extended KdV equation to be transformed to the K
equation. This transformation has been recently derived
Fokas and Liu@6# by using the symmetry of the associat
higher-order integrable KdV equation. The KdV two-solito
solution is used to directly generate the higher-order tw
soliton solution, to O(a), of the extended KdV equation
with arbitrary coefficients. If we substitute the transform
tion

h5u1aS c3

6
2

c1

6
1

2c4

3 Du21aS c2

12
2

c4

2
2

c1

12Duxx , ~4!

t5t1a
c4

3
x, j5x1ac5E

2`

x

u~p,t !dp, a!1,

where c55(8c42c3)/3 and u(x,t)→0, x→6` into the
extended KdV equation~1!, thenu(j,t) is a solution of the
KdV equation

ut16uuj1ujjj50, ~5!

where terms of O(a2) are neglected. This transformation
appropriate for solutions that approach zero far upstream
downstream, such as the solitary wave solutions consid
here. For other forms of solution, such as periodic solutio
the nonlocal term in the transformation~4! needs to be modi-
fied slightly.

There are four perturbative terms at O(a) in Eq. ~4!, pre-
cisely the number of higher-order terms in the extended K
equation~1!. Alternatively, the extended KdV equation~1!
can be transformed to a higher-order member of the K
integrable hierarchy; then only three of the perturbat
terms in the transformation~4! are required, as the wav
amplitudea can also be rescaled. Marchant and Smyth@5#
used the form of Eq.~4! without the nonlocal term while
Kraenkel@1# omitted the term perturbing the timet.

The soliton solution of the KdV equation is

u5A* sech2u where u5k* ~j2s2V* t!, ~6!
r-
re

e
e
f
s
th

d
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ed
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V

V
e

whereA* is the amplitude,k* andA* are related by 2k* 2

5A* , the velocityV* 52A* , ands gives the position of the
soliton att50. Using the KdV soliton~6! in the transforma-
tion ~4! gives

h5A* sech2u1aA* 2S c2

6
1

c3

6
2

c1

3
2

c4

3 D sech2u

1aA* 2S 3c4

2
1

c1

4
2

c2

4 D sech4u1•••, ~7!

where

u5k* F S 12a
2c4

3
A* D x1a2k* c5~ tanhu11!2s2V* t G .

Due to the nonlocal term in the transformation~4!, the phase
u is defined implicitly. The phaseu is made explicit by ex-
panding it in a Taylor series. Expanding the phase and s
ing the amplitude by using

A5A* @12a ~4c4/3! A* # ~8!

gives the higher-order solitary wave~7! as

h5A sech2u1aA2c6 sech2u1aA2c7 sech4u1•••,

where

c65S 2c3

3
2

c1

6
1

c2

6
25c4D , c75S 15c4

2
2

c3

2
1

c1

12
2

c2

4 D ,

~9!

u5k$x2s@11a ~2c4/3! A#12ac5k2Vt%,

V52A14ac4A21•••,

and 2k25A. Marchant and Smyth@3# derived the higher-
order cnoidal wave solution for Eq.~1!. Taking the solitary
wave limit of this solution@their ~2.25!# gives Eq. ~9!. It
should be noted that the transformation has shifted
higher-order solitary wave slightly, fromj5s at t50 to x
5s(11a(2c4/3)A)1a2c5k at t50. Hence, it can be see
that the transformation~4! gives the appropriate expressio
for a single higher-order solitary wave of the extended K
equation~1!.

III. THE HIGHER-ORDER TWO-SOLITON SOLUTION

The transformation~4! shall be applied to the two-soliton
solution of the KdV equation~5! to obtain the corresponding
higher-order two-soliton solution, to O(a), for the extended
KdV equation~1! with arbitrary coefficients. The two-soliton
solution of the KdV equation~5! is
1

8
u5

k1*
2f 11k2*

2f 212~k2* 2k1* !2f 1f 21m~k2*
2f 1

2f 21k1*
2f 1f 2

2!

~11 f 11 f 21m f1f 2!2
, ~10!
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where f i5exp2ki* (Vi*t2j1si), i51,2, Vi* 52Ai* , and m
5@(k2* 2k1* )/(k2* 1k1* )#2 ~see, Hirota in@7#!. The velocity
of the i th soliton is Vi* and its position issi1Vi* t. Well
before interaction~ast→2`,) the two-soliton solution~10!
is

u5A1* sech2u11A2* sech2u2 , ~11!

where

u i5ki* @j2si2Vi* t#, Vi* 52Ai* , i 51,2.

Expression~11! is just the sum of two solitons; it satisfies th
KdV equation~5! because the solitons are a long distan
apart~hence the interaction terms, such asf 1f 2 , in Eq. ~10!
are all negligible!. Also we chooseA1* .A2* ands1,s2 ; this
means that the larger soliton is behind the smaller one
tially. As the first soliton is larger, it travels faster; hence,
will interact with the second soliton as it overtakes it. To s
the result of the collision, the solution is considered w
after interaction~ast→`). After interaction, the solution is
again Eq.~11!, but with the phase shifts

1
1

k1*
lnS k1* 1k2*

k1* 2k2*
D , 2

1

k2*
lnS k1* 1k2*

k1* 2k2*
D , ~12!

for the larger and smaller solitons, respectively. Hence,
soliton collision is elastic. The only memory of the collisio
is a phase shift forwards for the larger soliton and a ph
shift backwards for the smaller soliton.

The higher-order two-soliton solution, to O(a), describ-
ing the interaction of two higher-order solitary waves go
erned by the extended KdV equation~1! with arbitrary coef-
ficients, is just the KdV two-soliton solution~10!
transformed by using Eq.~4!. Due to the complicated form
of Eq. ~10!, the explicit higher-order two-soliton solutio
will not be calculated; the nature of the collision can
found by considering the solution well before and after
teraction. Expression~11! describes the KdV two-soliton so
lution ~10! before and after interaction; substituting Eq.~11!
into the transformation~4! gives

h5A1 sech2u11A2 sech2u21aA1
2c6 sech2u1

1aA2
2c6 sech2u21aA1

2c7 sech4u1

1aA2
2c7 sech4u21•••, ~13!

u i5ki$x2si@11a ~2c4/3! Ai #2si82Vit%,

Vi52Ai1a4c4Ai
21•••, i 51,2,

where the cross terms~such as sech2u1 sech2u2) are negli-
gible due to the large distance between the solitons. Exp
sion ~13! is just two single higher-order solitary waves
required. As for KdV solitons, the higher-order solita
waves are unchanged in shape after the collision. Moreo
no dispersive radiation is generated; hence, the collisio
elastic.

The transformation modifies the phase shifts~12!, which
occur after interaction, of the KdV solitons. Before and af
interaction, the phase constantssi8 of each solitary wave are
e

i-
t
e
l

e

e

-

-

s-

r,
is

r

s185a2c5k1 , s285a2c5~k212k1!, t→2`, ~14!

s185a2c5~k112k2!, s285a2c5k2 , t→`.

As the nonlocal term in the transformation of the phaseu is
an integral from far behind the solitary wave to the curre
position, an extra term, due to the integration over the tr
ing solitary wave, can appear in the phase of the lead
solitary wave. Hence, it can be seen from Eq.~14! that the
extra term appears in the phase of the smaller wave be
collision and the larger wave after collision.

There are two contributions to the change in the ph
shifts at higher-order, the scaling in amplitude~8! and the
extra term that represents the integration over the trai
solitary wave. These phase shifts can be written in the fo

1
1

k1
lnS k11k2

k12k2
D24aDk2 , 2

1

k2
lnS k11k2

k12k2
D14aDk1 ,

~15!

where

D5 1
3 ~10c42c3!

for the larger and smaller higher-order solitary waves,
spectively. Note that in the special casec3510c4 , the phase
shifts are unchanged from the KdV case. These are the s
phase shifts as derived by Marchant and Smyth@5# by using
a different transformation.

Sachs@8# used a perturbation method based on inve
scattering to examine higher-order solitary wave water in
actions. He found that the interactions were elastic to O(a),
which is in agreement with the results found above. Zou a
Su @9# considered higher-order interactions of solitary wav
on shallow water by using a perturbation expansion of
Euler equations. At first-order the solution was assumed
be the KdV two-solition solution. Continuing the perturb
tion procedure results in partial differential equations d
scribing the solitary wave collision at second- and thir
order, which were then solved numerically. At second-or
@i.e., at O(a)], the solitary wave collision was found to b
elastic.

In the special case of surface waves on shallow wa
governed by Eq.~1! with coefficients~2!, the phase shifts
~15! are

1
1

k1
lnS k11k2

k12k2
D22ak2 , 2

1

k2
lnS k11k2

k12k2
D12ak1

~16!

for the larger and smaller waves, respectively, which is
same as, after appropriate scalings of space, time, and
amplitudea, those obtained by Zou and Su@9# directly from
the Euler water wave equations.

IV. COMPARISON WITH KRAENKEL’S RESULTS

Kraenkel@1# applied the asymptotic transformation to th
two-soliton solution of the associated higher-order integra
KdV equation and found higher-order coupling, or intera
tion, terms which were interpreted as evidence of an inela
collision. A special case was found where the collisions w
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elastic, whenc3510c4 . This special case corresponds
when the higher-order corrections in the phase shifts~15! are
zero. Here it is shown that the coupling, or interaction, ter
of Kraenkel correspond to those higher-order phase shif

Firstly, the two-soliton interaction terms of Kraenkel@see
Eqs.~14! and~15!# are reproduced. Also Kraenkel’s notatio
is used throughout. The interaction terms are

2
g

2
k1

4 sech2S hk1

2
D tanhS hk1

2
D 1

g

2
~k2

422k1k2
3!

3sech2S hk2
1A12

2
D tanhS hk2

1A12

2
D ,

t→`, ~17!

g

2
~k1

422k2k1
3! sech2S hk1

1A12

2
D tanhS hk1

1A12

2
D

2
g

2
k2

4 sech2S hk2

2
D tanhS hk2

2
D , t→2`,

where the arbitrary phase constantA has been set to zero an
k1 andk2 identify the two solitary waves and are related
the respective solitary wave amplitudes. Also, the cons
A12 is related to the phase shifts of the associated hig
order integrable KdV equation. Firstly, if the second solita
wave has zero amplitude (k250), then the interaction term
~17! should reduce to the one-soliton perturbative term~see
~12! in Kraenkel! for all values of timet. This is not the case
in ~17! as the remaining perturbative term~with coefficient
gk1

4/2) changes sign as time goes fromt→2` to t→`.
Hence, the correct version of Eq.~17! has negative coeffi-
cients throughout so that it is consistent with the one-soli
solution.

Consider the KdV soliton

w52
1

2
k2 sech2

k

2
~x1es!, ~18!

where s is a higher-order phase shift. As the higher-ord
phase shift is of O(e), a Taylor’s series expansion gives

w52
1

2
k2 sech2

k

2
~x!1es

k3

2
sech2

k

2
~x!tanh

k

2
~x!,

~19!
s

nt
r-

n

r

where terms of O(e2) are ignored. The higher-order term i
Eq. ~19!, which is the Taylor series expansion of the pha
shift in Eq. ~18!, has the same functional form as the inte
action terms of Kraenkel. Hence, it seems reasonable to
terpret the interaction terms~17! from the two-soliton inter-
action as phase shifts also. Using this interpretation for
corrected interaction terms~17! gives the phase shifts as

s1522gk22gk1 , s252gk2 , t→2`, ~20!

s152gk1 , s2522gk12gk2 , t→`,

well before and after collision. Using Eq.~20! gives the
higher-order correction to the phase shifts of the large
small solitary waves as22gk2 and 2gk1 , respectively. In
terms of the notation used in Sec. III, these corrections a

2 4
3 ~10c42c3!k2 , 4

3 ~10c42c3!k1 , ~21!

which matches the higher-order phase shifts derived in
~15!. Hence, it has been shown that the interaction terms
Kraenkel @1# are asymptotically equivalent to the highe
order corrections to the KdV phase shifts, as found in S
III.

V. CONCLUSION

It has been shown that an asymptotic transformati
which includes a nonlocal term, can be used to derive
higher-order two-soliton solution directly from the KdV two
soliton solution. The higher-order solitary waves are elas
to O(a) for all values of the coefficientsci . Moreover,
higher-order corrections to the phase shifts are found. Th
in agreement with the theoretical results of other autho
such as Sachs@8#, Zou and Su@9#, and Marchant and Smyth
@5#, who also conclude that the interaction is elastic to O(a).

The current theory, and that of Kraenkel@1#, have been
resolved with Kraenkel’s coupling, or interaction, term a
the higher-order phase shifts~15! shown to be asymptotically
equivalent via a Taylor series expansion. Marchant a
Smyth@5# verified the higher-order phase shifts~15! numeri-
cally in the special case of surface water waves, which p
vides additional evidence that the interpretation of the c
pling term as a phase shift is physically appropriate.
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